

Bachelor of Science (B.Sc.) Semester—III (C.B.S.)
Examination

CH-301 : CHEMISTRY (Inorganic Chemistry)
Paper—I

Time—Three Hours] [Maximum Marks—50

Note :— (1) All **FIVE** questions are compulsory and carry equal marks.
(2) Write equations and draw diagrams whenever necessary.

1. (A) What is LCAO approximation ? Draw and explain MO diagram of N_2 molecule. Write its MO configuration and calculate bond order. 5
(B) What are interhalogen compounds ? How are they classified ? Discuss structure and bonding in BrF_3 . 5

OR

(C) Differentiate between bonding and anti-bonding M.O's. 2½
(D) Draw and explain M.O. diagram of O_2 -molecule. 2½
(E) Discuss structure and bonding in S_4N_4 molecule. 2½
(F) What are polyhalides ? Discuss structure and bonding in ICl_4^- ion. 2½

2. (A) What are transition elements ? Discuss first transition series elements with respect to :

(i) Variable oxidation states and
(ii) Complex forming tendency. 5

(B) (i) Write redox reaction in liq. NH_3 and liq. SO_2 with one example of each.
(ii) Give reasons :
(a) Ti^{3+} is purple coloured while Ti^{+4} is colourless
(b) All Zn compounds are diamagnetic. 5

OR

(C) Calculate magnetic moment of Co^{2+} and Mn^{2+} ion (At. No. of Co = 27 and Mn = 25). 2½

(D) Discuss electronic configuration of first transition elements. 2½

(E) Explain catalytic properties of first transition series elements. 2½

(F) Define protic and aprotic solvents with example. 2½

3. (A) (i) Write electronic configuration of 5d-series elements.
(ii) An analyst obtained concentration of iron in a sample : 22.50, 22.42, 22.48 and 22.56. On the basis of Q-test predict whether the value 22.56 is to be retained or rejected. The Q_{table} value for four observations is 0.76. 5

(B) What is error ? How is it classified ? Give detailed account of determinate error. 5

OR

(C) Compare oxidation states of Cr, Mo and W. 2½

(D) Following values were obtained for chlorine :

32.22, 32.64, 32.52 and 32.46.

Calculate mean and median.

2½

(E) What is significant figures ? Find the number of significant figures in the following :

(i) 20.06

(ii) 7.89×10^{10}

(iii) 328.0

(iv) 0.368

(v) 10.010.

2½

(F) Distinguish between accuracy and precision. 2½

4. **(A)** What are inner transition elements ? Discuss lanthanide elements with respect to :

(i) Electronic configuration and

(ii) Complex forming tendency. 5

(B) (i) Discuss ion-exchange method for the separation of lanthanides.

(ii) Discuss actinides with respect to their oxidation states. 5

OR

(C) What is lanthanide contraction ? Explain basic character of hydroxides of lanthanides. 2½

(D) Name any two minerals of lanthanides. Why are lanthanides known as rare earths ? 2½

(E) What is gadolinium break ? Explain why Eu and Yb shows exceptionally high values of atomic radii. 2½

(F) Discuss the position of actinides in periodic table. 2½

5. Attempt any **TEN** of the following :

- Draw MO diagram of H_2 molecule.
- What is meant by nonbonding molecular orbital ?
- Draw structure of I_5^- ion.
- Why is Mn^{2+} more stable than Mn^{+4} ?
- Explain why second I.P. of Cr and Cu is higher.
- Define amphoteric solvent with example.
- Explain the terms Mean and Median.
- Define absolute and relative errors.
- Write maximum oxidation state of Co and Rh.
- Write stable oxidation state of Ce and Yb.
- Name the reagent used in solvent extraction method of lanthanides separation.
- Define actinide contraction. 10×1=10